One cannot rule them all: Are bacterial toxins-antitoxins druggable?
نویسندگان
چکیده
Type II (proteic) toxin-antitoxin (TA) operons are widely spread in bacteria and archaea. They are organized as operons in which, usually, the antitoxin gene precedes the cognate toxin gene. The antitoxin generally acts as a transcriptional self-repressor, whereas the toxin acts as a co-repressor, both proteins constituting a harmless complex. When bacteria encounter a stressful environment, TAs are triggered. The antitoxin protein is unstable and will be degraded by host proteases, releasing the free toxin to halt essential processes. The result is a cessation of cell growth or even death. Because of their ubiquity and the essential processes targeted, TAs have been proposed as good candidates for development of novel antimicrobials. We discuss here the possible druggability of TAs as antivirals and antibacterials, with focus on the potentials and the challenges that their use may find in the 'real' world. We present strategies to develop TAs as antibacterials in view of novel technologies, such as the use of very small molecules (fragments) as inhibitors of protein-protein interactions. Appropriate fragments could disrupt the T:A interfaces leading to the release of the targeted TA pair. Possible ways of delivery and formulation of Tas are also discussed.
منابع مشابه
The Comprehensive Sourcebook of Bacterial Protein Toxins
A significant number of bacteria, including the emerging multidrug-resistant “superbugs,” such as Pseudomonas aeruginosa, Clostridium difficile, Staphylococcus aureus, and Escherichia coli, secrete highly potent exotoxins with no antitoxins currently available to disable them. Several bacterial toxins, such as the botulinum neurotoxin (BoNT) of Clostridium botulinum, can be aerosolized and used...
متن کاملThe SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2.
A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from p...
متن کاملThree Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique Properties
One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual...
متن کاملToxin-antitoxin systems in bacteria and archaea.
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with...
متن کاملInhibiting bacterial toxins by channel blockage.
Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacter...
متن کامل